研究背景

近年来,抗生素作为一类新兴有机污染物在自然水环境中的出现引起了国内学者的广泛关注。抗生素作为治疗感染性疾病的药物,其使用广泛且用量较大。然而,抗生素进入人体或动物体内之后,有5%~90%是以母体结构形态或代谢产物形态通过尿液或粪便排出体外。例如,30%的诺氟沙星和70%的氧氟沙星未能代谢而从尿液中排出体外;55%的罗红霉素和65%的阿奇霉素以母体结构形态经由粪便排出体外。因此,抗生素的大量使用容易导致其通过直接或间接的途径进入环境,进而造成环境污染、危害生物体健康。

目前,世界诸多地区的自然水环境中已检测到抗生素的存在,它们对环境中生物体造成的潜在不利影响已引起研究者的高度重视,相关研究已经展开。本文综述了近几年国内外不同地区的自然水环境中抗生素的污染状况,同时分析了抗生素出现在环境中的主要来源。另外,基于目前已有研究成果对抗生素造成的环境危害进行了综述,以期加强对自然水环境中抗生素污染的认识,同时希望能为进一步开展抗生素环境风险评估及污染减排控制等研究提供参考。

摘  要

随着现代分析技术的发展和人们环境安全意识的增强,抗生素等新兴有机污染物在自然水环境中的出现已引起广泛关注。简述了不同自然水体中抗生素的污染现状,分析了自然水环境中抗生素的主要来源和环境危害。分析表明:抗生素在近海海域和河流中的检出频率和浓度均高于湖泊和地下水中的值,这可能是由于人类活动以及污水排放在海洋与河流中较其他水体更频繁所致;污水处理厂出水是自然水环境中抗生素出现的重要来源之一,而抗生素在污水处理厂的去除率与其自身物理化学性质和污水处理工艺有关。

01

自然水环境中抗生素的污染现状

抗生素类药物使用范围广、用量较大,导致其在自然水环境中出现的概率较大。诸多国内外的研究报道指出,自然水环境中已经检测出多种抗生素,包括海洋、河流、湖泊和地下水等自然水体。

1.海洋中的抗生素

海洋是地球上最辽阔的水体,是自然水体的最主要组成部分,海洋中拥有种类繁多的生物,其生态系统极为庞大。抗生素类污染物对海洋的污染不容忽视。诸多研究考察了国内外一些海域中抗生素的污染状况,如表1所示,其检出浓度为0.3~73722 ng/L。虽然其浓度处于纳克级、微克级水平,但抗生素种类繁多,目前的大部分研究所考察的抗生素种类有限,并不能反映出水体中抗生素的实际污染状况,因此也很难评估其真实危害。

表1 国内外海域中抗生素的污染现状

国家

海域

主要抗生素

浓度/

ng/L)

检出 频率/%

文献

比利时

大西洋东部

横胺屮噁哩

13 96

[7]

北海海湾

甲氧节暁

13 29

伊朗

波斯湾

阿奇霉素

0.3-4. 8

100

诺氟沙星

19 68

100

四环素

4.0-71

100

哥斯达黎加

哥斯达黎加

强力霉素

7173722

77

[9]

沿海海域

苯屮异噁哩青霉素

707571

2

诺氟沙星

381744

28

中国

维多利亚

红霉素

4.7-1730

100

[10]

海湾

氧氟沙星

8. 1-1140

100

甲氧节嚏

2.6-216

50

阿莫西林

0.64-76

100

中国

黄海南部

磺胺甲噁嗖

n. d.48

57

[11]

海域

红霉素

n. d. ~L 7

70

氟苯尼考

n. d.42

53

中国

渤海北部

磺胺甲噁曄

3-140

97

[12]

海域

氧氟沙星

3 5100

55

诺氟沙星

3 6800

55

红霉素

4-150

87

2.河流中的抗生素

河流是地球淡水资源的重要组成部分,是人类活动用水如工业用水和饮用水等的主要来源之一,其水质不仅对河流生态系统中的生物有影响,还对工农业生产与人体健康具有直接影响。抗生素类污染物对河流的污染同样关系到河流生态系统健康、人体健康等,因此引起了广泛关注。如表2所示,依据已有文献报道,国内外的许多河流中已检测到多种抗生素,其浓度为0.13~1900 ng/L。我国的重要河流,如长江、黄河、珠江等,均检测到抗生素类污染物。

表2 国内外河流中抗生素的污染现状

国家

河流

主要抗生素

浓度/ ngL)

检出 频率/%

文献

美国

139条河流

红霉素

100-1700

21.5

[13]

磺胺甲噁喋

1501900

12.5

甲氧节度

13 300

27.4

泰乐菌素

40 280

13.5

法国

塞纳河

磺胺甲噁哇

3.6-1435

[14]

红霉素

4-131

氧氣沙星

2.3-231

意大利

波河

环丙沙星

1.32 16

[15]

红霉素

0.78-4. 62

磺胺甲噁哩

1.832.39

氧氟沙星

0.6518.06

塞尔维亜

多瑙河、萨瓦河

甲氧节度

24 25

15

[16]

和蒂米什河

阿奇霉索

36 55

23

越南

湄公河

横胺甲恶哩

20 33

[17]

磺胺甲嗑度

15 28

甲氧苯卩定

719

红霉素

912

韩国

7条河流

磺胺甲恶哩

1.7-36

[18]

红霉素

1.8-4. 8

日本

37条河流

阿奇霉素

VLOQ 44.5

[19]

磺胺甲噁哩

VLOQ 33.9

屮国

珠江

红霉素

磧胺甲噁哩

诺氟沙星

30 636

37 193

13-251

[20]

中国

黄河

磧放甲噁呼

356

[21]

氧氣沙星

37 264

诺鑰沙星

46 300

中国

黄浦江

四环素

15. 07-113. 89

89.5

[22]

磧胺甲嘟啜

2.05-623. 27

100

罗红霉素

0.13 9. 93

94.7

中国

长江

甲砚霉素

3.3-110

100

[23]

磧胺甲噁哩

3.49-56.8

100

红霉素

0.35-45.4

100

中国

辽河、海河、

罗红霉素

27.4

93

淮河、长江、

克拉霉素

21

85

黄河

林可霉素

57.2

57.2

3.湖泊与地下水中的抗生素

湖泊与地下水都是地球上重要的淡水资源,诸多研究表明,一些地区的湖泊与地下水均受到抗生素类污染物的污染,部分报道如表3与表4所示。安大略湖、密歇根湖、我国的太湖、青山湖等均检测出抗生素,浓度为0.05~940 ng/L。地下水中抗生素的浓度为0.57~503 ng/L。从所涉及的文献看,湖泊与地下水中抗生素的浓度要比河流与海洋中的值低,这可能是由于人类活动在海洋与河流中较其他水体更频繁所致。

表3 国内外湖泊中抗生素污染情况对比

国家

湖泊

主要抗生素

浓度/ (ng/L)

参考 文献

加拿大

安大略湖

甲氧节嗟

0. 12 — 5. 51

[25]

磺胺嗜疇

0.04-0. 58

磺胺甲1噁哇

0. 05 — 1. 4

美国

密歇根湖

磺胺甲噁哩

4.5-77

[26]

罗红霉素

4.539

氣氣沙星

10 61

阿奇霉素

7.5 — 22

瑞士

日内瓦湖

环丙沙星

32

[27]

诺氟沙星

45

磺胺甲噁哩

14

塞尔维亚

察加湖

甲氧革嚏

174

[16]

阿奇霉素

81

中国

青山湖

磺胺甲噁哩

VLCQ10

[28]

甲氧茉嚏

2. 324.6

中国

洞庭湖

磺胺甲恶哩

n. d.47

[29]

磺胺噺嚏

n. d.61

环丙沙星

n. d.36

中国

太湖

诺氟沙星

15. 8356. 22

30]

氧氣沙星

7.45—17.01

磺胺甲噁哩

7. 42 — 53. 59

表4 国内外地下水中抗生素污染情况对比

国家

地域

主要抗生素

浓度/ (ng/L)

检出

频率/%

参考 文献

美国

华盛顿州

磺胺甲嗟喘

76 〜220

[31]

磺胺地索辛

46 〜68

美国

蒙大纳州海伦

磺胺甲噁哩

0. 57-490

78

[32]

娜谷地区

甲氧苯喘

1. 1 — 3. 1

10

中国

天津

环丙沙星

31. 8 — 42. 5

[33]

氯霉素

5.8-28. 1

磺胺多辛

78.3

中国

北京、天津、

VLOQ 〜80

[34]

上海等

氣氟沙星

< LOQ

93. 3

诺氣沙星

DOS

26. 7

红霉素

V LOQ

93. 3

磺胺甲噁哩

143

< LOQ

250

93. 3

02

水环境中抗生素的来源

通过上文可看出,全球许多地区的海洋、河流、湖泊、地下水等水体中均检测出抗生素,可见抗生素类污染物对于自然水体的污染具有普遍性。本文通过总结已发表文献,归纳了抗生素进入自然水体的主要途径包括污水处理厂、水产养殖场、畜牧养殖场和药品不恰当丢弃。图1为抗生素进入自然水环境的途径。

1.污水处理厂

抗生素在生物体内只有一部分能够代谢,据Kümmerer报道,10%~90%的抗生素经生物体后以母体结构形式由尿液及粪便排出,随后随污水进入污水处理厂。然而,目前大部分污水处理厂所采用的生物法污水处理工艺并不能有效去除污水中的抗生素,这是由于大部分抗生素的可生化降解性较差。本文总结了4类常用抗生素在不同污水处理厂的去除效果,如表5所示。可知:不同种类的抗生素,其去除率不尽相同,这与抗生素自身的物理化学性质有关。大环内酯类抗生素的去除率普遍偏低,可能是由于该类抗生素结构稳定不易被破坏。喹诺酮类抗生素与磺胺类抗生素的去除率波动较大,这与不同污水处理厂所用处理工艺不同有关。总体而言,这2类抗生素的去除率处于中等水平。β-内酰胺类抗生素的去除率均较高,可能是由于该类抗生素稳定性较差,容易被微生物所分泌的某些酶水解。另外,不同污水处理工艺对抗生素的去除效果不同,传统活性污泥法对抗生素的去除效果较差,而膜生物反应器工艺对抗生素的去除效果相对较好。总之,抗生素在污水处理厂的去除率与其自身物理化学性质和污水处理工艺有关,但大部分抗生素的去除效果并不理想,从而导致其随出水进入排放海域或河流。可见,污水处理厂出水是自然水环境中抗生素重要来源之一。

表5 不同种类抗生素在污水处理厂污水中的浓度及去除率

2.水产养殖场与畜牧养殖场

抗生素除了用于医治人体或动物体疾病之外,还普遍被用于动物饲养添加剂以保障动物健康及快速生长,这在水产养殖场与畜牧养殖场应用较为广泛。据报道,美国平均每年约生产22700 t抗生素,其中约有50%用于水产养殖业与畜牧养殖业。

淡水养殖场一般建造在河流、湖泊附近,海水养殖场常建造于近海岸海域中,因此养殖场中抗生素的使用通常会对附近地表水产生影响。Minh等在其研究中考察了维多利亚海湾中抗生素的分布情况,发现海域中土霉素和磺胺甲嘧啶的检出浓度较高,推测是受到了该海域附近水产养殖场的影响。Zou等研究我国渤海海湾中抗生素分布情况时发现,所考察海域中抗生素的来源主要有入海河流及附近水产养殖场排放的废水。

畜牧养殖场中动物所食用的抗生素只有部分被代谢,大部分以母体结构随排泄物排出,从而进入环境中。有研究表明,若金霉素添加于牛饲料中的量为70 mg/(头·d)时,牛粪便中金霉素含量为14 μg/g。

03

自然水环境中抗生素的危害

虽然抗生素在自然水环境中的浓度相对较低,但其对生态系统及人类健康的潜在危害不容忽视。随着抗生素在自然水环境中被频繁检出,针对其危害的研究也越来越多。根据已有文献报道,自然水环境中抗生素的危害可归结为3个方面,即生物毒性、诱导抗药菌或抗药基因、威胁饮用水安全性。

1)作为抑制微生物生长的药物,抗生素对于某些生物,特别是微生物的生长有不利影响。目前已有诸多文献报道自然水环境中的抗生素对某些生物具有毒性作用,从而影响其正常生长或繁殖。例如,Andreozzi等研究了自然水体中痕量阿莫西林对藻类的毒性作用,发现阿莫西林对蓝藻门聚球藻属的S. leopoliensis藻具有较强的毒性作用,该抗生素对该藻类的无观察效应浓度(NOEC)、最低观察效应浓度(LOEC)和半最大效应浓度(EC50)分别为0.78,1.56,2.22 μg/L级。另外,值得注意的是,目前针对抗生素类污染物的毒性或风险评估通常是在单一抗生素条件下开展,然而在实际水环境中,抗生素往往是以多种药物混合共存的形式存在,协同作用可能产生比单一抗生素更强的毒性。Backhaus等研究了包括抗生素在内的26种痕量药物混合物在污水处理厂出水中的环境风险,结果表明,该药物混合物的环境风险值是任何单一药物环境风险值的1000倍以上,可见混合药物的危害远大于单一药物。

2)自然水环境中的抗生素能够诱导抗药菌或抗药基因的产生。Luo等研究了天津市海河中磺胺类抗生素与抗药性基因产生的相关性,结果表明,河流中磺胺类抗生素抗药基因的相对丰度与河流中磺胺类抗生素的浓度呈正相关性。Jiang等的研究得出了类似的结论:黄埔江中2种磺胺类抗药基因和8种四环素抗药基因浓度与河流中残留磺胺类抗生素和四环素浓度呈正相关性。

3)抗生素类污染物可能威胁饮用水的安全性。饮用水水源可能被抗生素污染,若净水厂不能将抗生素去除,其将进入饮用水管网。Benotti等考察了美国19所净水厂的进水、出水和住宅区管网自来水中多种药物类污染物的污染情况,研究表明,17所净水厂的进水中均含有磺胺甲噁唑,最高浓度为110 ng/L(平均浓度为12 ng/L);11所水厂的进水中含有甲氧苄啶,最高浓度为11 ng/L(平均浓度为0.8 ng/L);4所净水厂出水中检测到磺胺甲噁唑,最高浓度为3 ng/L(平均浓度为0.39 ng/L);1所净水厂的住宅区管网自来水中检测出磺胺甲噁唑,浓度为0.32 ng/L。

04

结语与展望

综合来看,抗生素在近海海域和河流中的检出频率和浓度均高于湖泊和地下水中的值,这可能是由于人类活动以及污水排入海洋与河流中较其他水体更频繁所致。污水处理厂出水是自然水环境中抗生素的重要来源之一,而抗生素在污水处理厂的去除率与自身物理化学性质和污水处理工艺有关。自然水体中抗生素的环境危害已得到科学证实。目前,针对该领域的研究方兴未艾,尚待完善的研究方向有如下几方面:加强对环境中多种抗生素联合毒性效应及风险评估研究;加强抗生素在多介质环境中的迁移与转化研究;加强针对污水处理厂出水中抗生素等新兴污染物减排控制优势工艺研究;加强抗生素在饮用水水源水及自来水中健康风险评估研究。

点赞(1) 打赏

评论列表 共有 0 条评论

暂无评论

热门产品

谜男方法(The Mystery Method)【中文版】【Mystery】|谜男方法,The Mystery Method,Mystery,男方,the mystery method,中文版,mystery
谜男方法(The Mystery Method)【中文版】【Mystery】
冷读术(精简版本)|冷读术,精简,版本
冷读术(精简版本)
把妹达人2[1].游戏规则(Rules of the Game)【Neil Strauss】|把妹达人,把妹游戏规则,Rules of the Game,Neil Strauss,把妹达人2,游戏规则,rules of the game,neil strauss
把妹达人2[1].游戏规则(Rules of the Game)【Neil Strauss】
追求有术之撩汉指南-310页|撩汉指南,撩汉攻略,追求,有术,之撩汉,指南,310页
追求有术之撩汉指南-310页
追求有术之撩妹指南-288页|撩妹指南,追求,有术,之撩妹,指南,288页
追求有术之撩妹指南-288页
术中电烧伤的预防与处理|电烧伤的预防,电烧伤的预防与处理,电烧伤的处理,术中电烧伤,中电,烧伤,预防,处理
术中电烧伤的预防与处理
《盆底康复-盆底功能障碍性疾病的诊断治疗》培训课件ppt(69页)|盆底康复,盆底功能障碍性疾病,盆底功能障碍性疾病诊断,盆底功能障碍性疾病治疗,盆底功能障碍性疾病培训课件,盆底功能障碍性疾病培训,盆底功能障碍性疾病课件,盆底功能障碍性疾病诊断治疗,盆底,康复,功能,障碍性,疾病,诊断,治疗,培训,课件,ppt(69页)
《盆底康复-盆底功能障碍性疾病的诊断治疗》培训课件ppt(69页)
面诊手诊背诊舌诊腹诊...课件|面诊课件,手诊课件,背诊课件,舌诊课件,腹诊课件,诊断课件,面诊手诊背诊舌诊腹诊,课件
面诊手诊背诊舌诊腹诊...课件

历史上的今天:04月19日

创新

创新各位美丽誓颜的亲们,大家好,很高兴今天能够在【晨荟日志】栏目与大家分享日志。作为培训教育部的一名助理,平时的主要工作是协助赵老师对内进行部门管理,对外进行培训群的管理。而今天为什么会由我来给大家分享呢?是因为近段时间在整理 百度云资料和建立新的群规则中,有很多心得跟感悟想和大家分享,希望通过我的分享可以帮助到美丽誓颜的所有代理、团队, 以及和我一样的助理人员。那么今天要分享的话题是创新。说到创

MPP电力电缆护套管150*10价格

MPP电力电缆护套管150*10价格品牌t型号150材质其它公称压力2.8Mpa管子形状直管用途电线护套长度10m  MPP顶管:化学名称:聚丙烯 比重:0.92-0.97克/立方厘米 成型收缩率:1.0-2.5% 。MPP热熔融在加工上有两个特点:其一:MPP熔体的粘度随剪切速度的提高而有明显的下降(受温度影响较小);其二:分子取向程度高而呈现较大的收缩率。MPP的热熔加工温度在(270-300

PVC电力管CPVC电缆保护管安装

PVC电力管CPVC电缆保护管安装品牌通达管业型号160材质其它公称压力1.6Mpa管子形状直管用途电线护套长度6m  CPVC电力管 管铺管安装说明:【宁国通达管业编辑】  1、CPVC电力套管标准定长(6米)管材配置管枕3付,管枕间距为2.0m,管枕距接头处为0.5 m。管堵若干。  2、CPVC电力护套管下管应该由人工进行,由地面人员将管材传递给槽底施工人员。严禁将管材至槽边翻滚入电缆沟。 

睡前说晚安的动态温馨祝福表情图

睡前说晚安的动态温馨祝福表情图1、卸去一天的重负,轻轻闭上你的眼睛,让快乐悄悄进入你的梦乡,让幸福静静守在你的身旁,让我的祝福为你建造一个美好的梦境。2、为了给你催生“好梦”,我的信息晚上“出动”:让安稳做你睡眠的“主调”,让美好做你梦乡的“主导”,让你做今夜的床榻“主人”! 3、卸下一身装扮,轻松躺在床上,深深一呼吸,即将梦周公,愿梦中一切都实现,晚安,愿清晨醒来别样舒爽!4、每天都是一首歌,涂

《点亮你的肌光,开启女神之路》

《点亮你的肌光,开启女神之路》女神光感修颜乳各位亲爱的小伙伴们晚上好,我是 Queenie 老师,很高兴又能跟大家见面了,今天晚上我会给大家带来一款全新升级的产品,也是大家期待已久的,它的名字叫女神光感修颜乳(也就是我们原来的 3d 女神霜),经过王总的精心研发,这款产品无论从它的名字、包装、成分和功效上都有了革命性的突破,希望通过今晚的学习,大家能对它有一个全新的认识。我们经常会说,男人要有修养

CPVC电缆保护管有哪些优点

CPVC电缆保护管有哪些优点CPVC电缆保护管有哪些优点领先其他管道1、耐热性能CPVC电缆保护管较普通的UPVC双壁波纹管耐热温度提高15℃,能在93℃以上的环境下,保持不变形,且具有足够的强度。2、绝缘性能CPVC电缆保护管能经受3万伏以上的高压。3、抗压性能CPVC电缆保护管经过材料改性,产品环刚度达到1Okpa,明显高于国家有关部门对于埋地塑料管,其环刚度应在8kpa以上的规定。4、抗冲击

热门专题

国家开放大学|国家开放大学报名,国家开放大学报考,国家开放大学,什么是国家开放大学,国家开放大学学历,国家开放大学学费,国家开放大学报名条件,国家开放大学报名时间,国家开放大学学历,国家开放大学专业
国家开放大学
一年制中专|中专学历,中专是什么学历,中专是什么,中专有什么专业,中专升大专,一年制中专
一年制中专
弥勒综合高中|弥勒综合高中
弥勒综合高中
小程序开发|微信小程序,小程序开发,小程序,小程序制作,微信小程序开发,小程序公司,小程序开发公司,分销,三级分销系统,分销系统
小程序开发
云南综合高中|云南综合高中
云南综合高中
开放大学|开放大学报名,开放大学报考,开放大学,什么是开放大学,开放大学学历,开放大学学费,开放大学报名条件,开放大学报名时间,开放大学学历,开放大学专业
开放大学
昆明综合高中|昆明综合高中
昆明综合高中
云南开放大学|云南开放大学报名,云南开放大学报考,云南开放大学,什么是云南开放大学,云南开放大学学历,云南开放大学学费,云南开放大学报名条件,云南开放大学报名时间,云南开放大学学历,云南开放大学专业
云南开放大学

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部